
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 106
Volume 1, Issue 3, October 2010

Global eXtreme Programming, a Software

Engineering Framework for Distributed Agile

Software Development

Ridi Ferdiana
1
, Lukito Edi Nugroho

1
, Paulus Insap Santoso

1
, Ahmad Ashari

2

1Department of Electrical Engineering and Information Technology, Gadjah Mada University

2Department of Computer Science and Electronics, Gadjah Mada University

Yogyakarta - Indonesia

ridi@te.gadjahmada.edu, lukito@mti.ugm.ac.id, insap@te.gadjahmada.edu, ashari@ugm.ac.id

Abstract: Distributed software development or multi-site

development may increase the development life cycle. This happens

predominantly due to cross-sites communication and coordination

difficulties, which have made software development an even more

challenging task. The need of a simple and formal framework has

been discussed through the concept of Global Software

Development (GSD). However, the redundancy of development

effort makes GSD need to be streamlined. This paper will make an

effort to create a conceptual framework based on the well-known

agile method called eXtreme Programming with the existing GSD

process. The framework is called GXP, and it provides a formal

framework that dedicated for distributed software development.

Keywords: Distributed Software Development, Global Software

Development, eXtreme Programming, Software Engineering

Framework.

1. Introduction

Distributed software development comes with several types

and level [7]. It can be global (different places, different

organization), inter-organization (different places, same

organization) or open source project development (different

places, no organization). Holmstrom et al. [8] refines the

types of distribution models, which are geographical,

organizational, temporal, and stakeholder’s boundaries.

Those types are escalated through two main entities, which

are people and its artifacts.

People challenges in distributed software development are

caused by the dispersion of people among several locations.

This is related to communication and cooperation between

people. For example, the physical distance between people

limited in formal communication. This might lead to a lack of

information in a project. Extended communication effort, on

the other hand, can lead to information overhead or too much

discussion rather than develop the software. Thus, the

software project should aim at a trade-off between lack

information and information overhead.

Communication problems arise because several factors,

which are social and cultural differences between distant sites

[5], time zone separation [9], perceives distance within

members of the given stakeholder group (Evaristo and

Scudder, 2000), and different motivation background [7].

Those factors addressed by providing communication tools

like Computer-supportive and Collaborative Work (CSCW)

[6]. CSCW has been discussed long time to enhance

communication in the distributed team. The issues within

CSCW implementation are about the learning curve, the

amount of such work is increasing, and the unusual way to

communicate.

Artifact challenges are caused the need of task distribution,

the level of synchronization, decision making, skills and

knowledge of each member. Although it is not related

directly with the people, this challenge should be answered

through the organizational and software engineering process.

The rest of paper is organized as follows. First, we discuss

the existing solution in the multi-site development. Secondly,

we describe our research approach to synthesize the formal

framework called GXP. The research then reports the result

by a discussion of the implication of those results, limitation

of the work and future research directions.

2. Current Research Solution

Distributed Software Development, Collaborative Software

Development (CSD), and Global Software Development

(GSD) process is related processes, which make an effort to

manage artifacts, people, and product through software

engineering disciplines for multi-site software development.

Distributed Software Development (DSD), Collaborative

Software Development (CSD), and Global Software

Development (GSD) are termed that interchangeably used to

describe a software engineering process solution to overcome

software engineering limitation in the distributed

development model. Although those terms are used

interchangeably, those terms have a different point of view to

solve the problem.

DSD is the generic term which is used to describe

management, development, and maintenance of software that

being geographically distributed across the globe [13]. DSD

research focuses in non-technical issues that related with

distributed software development like coordination,

awareness, and dependency management. DSD provides a

problem-solution model that captured from field reports and

adapted to the other's problem which has same context. For

example, manufacturing organization is creating their

production monitoring software through distributed software

development model. The organization creates patterns and

practices from their experience. Those patterns and practices

afterward are adopted by different organization in the

mailto:ridi@te.gadjahmada.edu
mailto:lukito@mti.ugm.ac.id
mailto:insap@te.gadjahmada.edu
mailto:ashari@ugm.ac.id

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 107
Volume 1, Issue 3, October 2010

different country to create the similar software.

CSD is another term that describes a set of tools that

strengthen collaboration in software development [13]. CSD

researches to provide several alternative tools that help

collaboration in distributed software development. CSD is

created based on CSCW concept, which is solving the distant

and coordination problem through tools, the difference is that

CSD provides a specific tool for distributed software

development.

GSD is a contemporary form of software development

undertaken in globally distributed locations and facilitated by

advanced information and communication technology (ICT),

with the predominant aim of rationalizing the development

process [12]. GSD offers theoretical process to handle

distributed software development. As a software engineering

process, GSD offers planning strategy, organization

structure, and progress control and monitoring. Rather than

others approaches or terms, GSD provides more sufficient

process and workflow in the software engineering

framework.

Many of the GSD implementations are happened in an

organization that has a software project in enterprise level.

Company like Lucent, Microsoft, Philips, and Siemens is a

small sample that done GSD for their software products.

Nowadays, GSD is also happening in personal, small scale

(1-6 people), and community software development. For

example, a person can get a software development project

from a freelance website, small group can get a client from

different region or countries through an internet project

bidding and community can build software like open source

software through Sourceforge, or Codeplex system. Those

opportunities give a clear view that GSD needs to be

simplified.

This research has been motivating factors to deliver a

simple approach in distributed software development.

Simplification and effectiveness are the legacy problem for

every software development. Therefore, many research focus

in simplification and effectiveness. Agile process is one of

the software engineering processes, which are dedicated to

simplify the process and give a center of attention in

delivering working software. Agile community through theirs

manifesto promises a simple and standard way to build a

software. However, agile process is fitting in collocated

software development since the process extremely needs

direct interaction without a distant.

Based on those hypotheses the research sees an

opportunity to integrate the existing GSD process with the

agile method. In a specific view, the research will choose one

of the agile methods called eXtreme Programming (XP). XP

is a lightweight methodology for small-to-medium-sized

teams developing software in the face of vague or rapidly

changing requirements [3]. During its execution XP gets

optimistic feedback to implement in personal software

development [1], and also enterprise development [4]. Those

researches provide factual information that XP has been

sufficient in scalability aspect. Therefore, XP is chosen as an

agile process in this research and will be integrated with the

GSD in this research through a formal framework design

process.

3. Framework Design

 3.1 Software Engineering Framework

The high level of the framework describes the entities,

building block and its relation. A framework is reusable

design that requires components to functions. To create a

framework, a researcher should provide the components

required by the framework. In order to do this effectively, the

framework-component interfaces must be specified so the

researcher knows what expectations the framework makes

about the component, and so the components can be verified

against these assumptions. The framework itself can be

designed to several points of view such as technical function,

software engineering, and domain-specifics process.

A component is a software unit (for example, example

module, set of function, or a class) or data unit that has a

defined interface for which the component provides an

instantiation. As framework entities, component should be

easy to understand through its interface. To do so, component

in a framework can be anything includes the data or non-

software component.

To understand and use a framework, the framework must

be specified, the engineer must understand what framework

does, what components must be provided to instantiate the

framework, and how to use the framework. In order to

discover this information, the research defines the framework

specification that includes three tasks.

1. Specify the syntax of the framework

2. Specify the semantics of the framework

3. Specify the framework component-interfaces.

The syntax of the framework specifies how the engineer

uses the framework, that is, how the framework becomes a

system of a part of the engineering system. For example, if a

framework provides a test driven development function, the

engineer knows how the function is executed. The semantics

of the framework specifies what functionality it provides.

The framework-component interfaces define the syntax of the

components.

The result of the framework creation from the followed

processes is called as Global eXtreme Programming

framework (GXP). The research result is said as an

unadjusted framework. Unadjusted term means that the

framework needs several details, implementation, and

assessments.

 3.2 GXP Framework syntax

GXP framework syntax states how the distributed software

development is executed. The framework has three main

operations that are processed, method and tools operation.

The process is the first operation that is executed to define an

asset value and principles of the software development in

GXP model. After the team understood the process, the team

can learn the comprehensive daily execution of GSD through

method operations. This operation makes the team

understood the daily how-to and technical practices of the

development execution. The last syntax of the framework is a

tool. The tool gives productive understanding and real

experience execution through the supporting tool. Figure 1

describes the three framework syntax in a sequential block

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 108
Volume 1, Issue 3, October 2010

diagram.

Figure 1. Framework syntax block diagram

GXP Process describes base framework activities that exist

in global software development. Software development life

cycles, software estimation, organization structure, and

quality assurances are components that described in GSD

process. GXP process works as umbrella activities for

relating building block like GXP method or GXP tools.

GXP method describes the practical “how-to” in order to

build software in the distributed model. GXP method

includes software development practices, value, project

artifacts, and project management practices. GXP method

works as a guidance or step by step execution to solve

distributed software development.

The last but not least is GXP tools. It is designed to give

productivity tools for distributed software development. It

consists of infrastructure requirements supports,

communications tools, and collaboration software. The tools

work as cross cutting building blocks that support GXP

process and GXP method.

 3.3 GXP Framework semantics

GXP semantics explicitly provides the component that

contains within the operation. This step explicitly identifies

components and its functionality. The aggregation of the

result provides what the framework does and decision

information for a software engineers to do properness and

suitability of the framework based on their need.

Process semantics contains several components that

related with the groundwork activities before the project is

executed. Therefore, the process component displays several

abstract components that related with the process. The

research identifies the process semantics are preparation

activities that need to be done before the project executed,

the lists come up as follows.

1. Quality controls focus, since the software engineering

purposes are to deliver good quality software. The

quality controls focus dedicates several principles to

cover good characteristic software in GXP framework.

This component should be a first component to

comprehend by the team.

2. Software development life cycle, this component

acknowledges the SDLC of GXP. The SDLC describes

the phases of the project that need to covers in GXP.

3. Software estimation, this component will allow the

engineer to estimate the complexity the software by

looking at the technical and experience factor. The early

estimation will give the engineer better understanding

about feasibility of the project based on the budget, time,

and resources.

4. Team organization, this component is the last component

that needs to learn in order create the jell team in GXP.

Several roles are introduced and job descriptions are

described.

Method semantics describes the technical “how-to” in terms

of the project execution. This semantics only executed if the

project is agreed in resources, budget, and time. Several

components are identified as follows.

1. GXP values and principles, this component describes the

GXP values and principles. This component covers what

the team needs to understand the framework mindset.

2. GXP practices, this component describes the practical

action which is believed to be more effective at

delivering a particular outcome. GXP Practices also be

defined as the most efficient (least amount of effort) and

effective (best results) way of accomplishing a task.

3. GXP artifacts, this component describes any kind of

tangible product that produced during the development

of software. GXP artifacts consist of several document,

template, and knowledge base to execute GXP software

development.

4. GXP project management, this component describes the

discipline of planning, organizing, and resource

management to bring about the successful completion of

specific project goals and objectives based on GXP

point of view.

Tool semantics described the support of the software and

infrastructure to improve the development productivity. The

components are described as follows.

1. The communication Tools. This component discusses

several communication tools and sample that

appropriate to support GXP framework.

2. Infrastructure support. This component recommends some

of the infrastructure specification to develop GXP

environment.

3. Collaborative workspace. This component provides proof

of concept recommendation by delivering suite tools for

GXP framework projects.

Through the three framework syntax, the research proposes

eleven components that dedicated to support the framework

purposes. Those components will be rearranged in its

execution through an interface identification step.

 3.4 GXP Framework Interface

GXP framework component interfaces discuss the input and

the output of the component that already defined in previous

step. Table 1 describes the interface for GXP component.

Table 1. GXP Framework component interface
Component Input interface Out Interface

Quality control
focus

Market intent and project

vision

User stories baseline

SDLC Project scope and time Schedule plan

Software
Estimation

User stories, technical

factor, and experience

factor

Software complexity,

user story point, and

effort rate

Team
Organization

Effort rate, software

complexity

Team profile

Values and
principles

Team profile Team mindset

Practices Team mindset Action plan

Artifacts Schedule plan, action

plan

Project artifact

Project
Management

Schedule plan, action

plan

Tracking execution

Communication
Tool

Crosscutting interface Crosscutting interface

Infrastructure
Support

Crosscutting interface Crosscutting interface

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 109
Volume 1, Issue 3, October 2010

Collaborative

workspace
Crosscutting interface Crosscutting interface

Input interface is an input for the component, after the

process of the component the output interface delivers the

output channel for the process result. The process result can

be processed further through another component. Several

components also work as crosscutting interface, crosscutting

interfaces describes a component that communicates

intensively as a support component.

4. GXP framework prototype

 4.1 Instantiation of the GXP Framework

Instantiation of the framework describes a step to pull the

component into high level architecture. This step consists of

two tasks, which are specifying the system properties and

providing concrete components. The system properties define

the system that implements when the framework is

instantiated with all the components it needs. One of the

complexities in framework use ensuring that the framework is

applied to areas for which it is suitable. Stating system

properties also allows for verification tasks to be undertaken

ensuring that the framework with the instantiated component

satisfies these properties. The second task is to provide

concrete components that are instantiations of the

components specified as part of framework specification. It

can be concreted as file, document, or even the codes.

GXP framework properties cover several key points such as

follows.

1. The input of the framework is an initiative to execute the

software project distributed.

2. The output of the framework is an effective approach to

manage and track the distributed project.

3. The process of the framework follows the XP phases

which are exploration, planning, iteration, production,

and maintenance.

4. The feedback mechanism of the framework which are

executed through user acceptances test and production

release feedback.

5. The environment of the framework is an environment

where the ICT infrastructure like broadband the internet

exists.

The concrete of the framework can be described through

artifacts and the tools that support the framework. The

artifact will exist in every phase of the project as main

deliverables of the framework execution and tracking. The

tool works as artifacts placeholder to manage, collaborate,

and track the artifact.

 4.2 GXP in the big picture

In a big picture, GXP provides overall building block of the

framework architecture. The big picture covers the

component, the dependency between components, and the

semantics of the framework. As mentioned before, there are

three building blocks, which are processing building block,

method building block, and tool building block.

Process building block discusses about the starting point

where the GXP should be started by the team to follow. It’s

provided several abstract values and principles that can be

done by the team before the project starts and when the

project is executed. The technical how to of the process is

described in method building blocks, method building block

discusses the implementation of the process through several

values, principles, practices, and artifacts. Both process and

method are supported by the existence of the tools as

crosscutting layers that can communicate in the term process

or method.

The proposed framework semantics and components

provide probabilities to use GXP framework in several

models of implementation. For the people who want to

implement the GXP, it is recommended to start by seeing the

project condition. GXP proposes three project conditions,

which are remote model execution, virtual team model, and

distributed team model.

Remote execution model is based on the situation, when

the distributed context is only happened between team and

the client. This execution model usually happens in a small

scale project and less urgency. The team is on the same place

while the client is separated by distance. The characteristic of

this execution model is.

1. There is no management difference since the team is still

one site. The working process can be like XP team with

the small tweak from GXP framework in terms of tools

and method.

2. Few number of the team members with the small

complexity inside the project. The kind of projects that

worked in this execution model most likely small in

dependency and urgency for the client.

3. Project length between one to three months with small

iteration for two weeks or less.

Virtual execution model is based on the situation where

the distributed context is happen between the client and

inside the team. The difference between the remote model

executions is the location the team that also separated. The

portion of the team is onsite with the client while the rest is

separated. The others characteristics of virtual team model

described as follows.

1. Management treats the team as a single virtual team. The

team will have one single management but separated by

distances.

2. Small to the medium numbers of the team with the medium

complexity inside the project. The project typically is

related with the core business for the client

3. The project length might be in three to twelve month with

small medium iteration length between one into two

months.

Global execution model is based on the situation where the

distributed context is happening globally. The main

characteristic of this execution model is huge numbers of

team member’s. The member might be different time zone

and culture. The main characteristic of this execution model

as follows.

1. Management divides clearly between central management

and site management as separated instances.

2. Enterprise scale application with medium to large team

numbers. The project typically is related with a core

product that will be sold in the global market with

different language, need, and culture.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 110
Volume 1, Issue 3, October 2010

3. The project length might be multiyear with medium to

long iteration model between bimonthly into quarterly

iteration.

Several execution models will make the team behave

differently in terms of working model and initial

configuration. Table 2 provides information about the

recommended configuration for the team which wants to

choose GXP as a distributed software development

framework.

Table 2. GXP classification and initial recommendation
Recommendation Remote

execution
model

Virtual
execution

model

Global
execution

model

Milestone length 1-3 months 3-12 months 12 months or

more

Iteration length 1-2 weeks 4-8 weeks 8-16 weeks

Team model[12] Hub-to-Spoke Hub-to-Hub Mesh (fully

distributed)

Project
management

Onsite Offshore and

centralized

Offshore and

distributed

 4.3 Using GXP Framework

Framework is a baseline for the team that wants to extend

customized distributed development implementation without

losing the essential of the framework component that need to

be defined. Using GXP framework can be done through

seven simple steps. These steps can be followed by the

development team which wants to implement the framework

for their distributed development need. The seven checklists

are described as follows.

1. Verifying GXP Framework and project appropriates.

2. Choosing GXP classification.

3. Composing GXP team.

4. Learning GXP values, principles, practices, and artifacts.

5. Estimating the project.

6. Preparing the infrastructure and tools.

7. Executing and monitoring GXP through its SDLC.

GXP is not a silver bullet, there are several constraints

where the framework becomes ineffective based on several

conditions and constraints. The team should investigate the

suitable project based on the discussion of the team. The first

step is choosing the appropriateness between the project and

the framework. Based on the GSD and XP concepts, GXP

frameworks work appropriate when the several conditional.

1. The project at least partially distributed. Adopting GXP in

the onsite project will make it work but not as efficient

as just like adopting XP in the onsite project.

2. The project is not real time project or crucial project.

Building software for the earth quake monitoring or

other extensive resources project will not be appropriate

with GXP.

3. The business culture of the client support working

distributed. Some clients have a culture to appreciate

the development team always onsite when this situation

happens; the GXP framework is not effectively useful.

4. The business culture support continuous communication

and improvement. Single meeting specification or the

business of the offshore client make the GXP project

won’t work best when they do less communication.

5. The business culture support less document work but

running software instead. GXP is dedicated to work in

balance between document and software.

If the project is suitable based on those checklists, the team

can start to choose the GXP as a framework and select the

appropriate model of GXP such as remote, virtual, or global

execution. Choosing the GXP model will give the team the

initial configuration and recommendation of the project.

The initial configuration will help the team to choose the

proper team scale and initial planning. GXP encourages the

team follows XP roles such as the coach, developer, tracker,

project manager, tester, and domain expert. These roles will

be composed in a central team or a site team. Central team is

a team that manages one or more site teams. In the small

team, central team can be a team that has the management

role for the overall team.

Just like in XP, team organization and structure creation is

created several phases in the software development life cycle

(SDLC). As the iteration phase begins, both site team and

central team should be established and ready to build test and

codes. Central team works as a monitoring team for the site

team during the iteration, production, and maintenance phase.

Ideally, both central team and site team has the same team

composition. For example, central team can only have a

management members like a project manager and domain

expert, and site team has the rest technical team. There are no

rules of thumb the team composition, since the situation is

mostly driven by the resources.

After the team is composed, the team can start the learning

curves by understanding the values, principles, practices, and

the related GXP artifacts. Values, principles, and practices

are lent from the XP methodology. However, several

practices like pair programming and standup meeting is

replaced with the equal interaction like online interaction

through instant messaging or video conferences. In this step,

it will be the good idea for the team to execute short term

coaching workshops that learn principles, practices, and

values.

The team can do estimating Estimation defines the

approach to do better planning. It is executed in exploration

phase. The result of the estimation technique is a quantitative

result that works as a baseline for the software complexity

measurement, user stories points, and effort rate. GXP

estimation technique will answer how big or small is the

project in a quantitative model.

The estimation result can make the team have clear

visibility how complex the project, and how long it will take.

After the estimation activities, team can implement the

infrastructures that needed by the team. It means every

communications and collaboration software should be

installed, configured, and ready to use by the team. This step

is including, training and testing the infrastructures between

of sites.

After the infrastructures ready, the team can start the full

of software development lifecycles. There are four phases in

GXP SDLC. Figure 2 shows the GXP SDLC. It defines the

overall lifecycles based on the well-known eXtreme

Programming development life cycle. XP method adopts

exploration, planning, iteration, production, and maintenance

as a phase in a development cycle.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 111
Volume 1, Issue 3, October 2010

 cmp GXP SDLC

GXP SDLC

Exploration Planning

Iteration Production Maintenance
Product

«flow»

Iteration Planning

«flow»

user stories

«flow»

Spike Solution

«flow»

small releases

«flow»

Release Planning

«flow»

Product Scope

«flow»

Business Goal

«flow»

Product Vision

«flow»

Customer Feedback

«flow»

Acceptance Test

«flow»

Figure 2. GXP Software Development lifecycles

Every phase has several inputs and the output results of the

phase. The execution of each phase is not really sequential

and one at a time. Except the exploration phase, the rest

phases on the GXP SDLC are iterative and incremental.

Table 3 describes the input and the output of every phase and

also shows the workflow of the software development life

cycle.

 Table 3. GXP SDLC input and output process
Phase Input Output

Exploration Product Vision User Stories

 Business Goal Spike Solution

Planning Product Scope Iteration Planning

 User Stories Release Planning

Iteration Spike Solution Small Releases

 Iteration Planning

 Customer Feedback

Production Small Releases Product

 Release planning

 Acceptances Test

Maintenance Product Fixed Product

Based on the phases, the team should also prepare the

artifacts for each phase. The artifacts are a useful

documentation that provides a tracking history for the

product evaluation that developed by the team. Unlike XP

that mostly depends on the codes and comments, GXP should

prepare the artifacts as a tool to exchange the knowledge

between sites. Furthermore, the team should create just

enough document and others resources so that the artifacts

are not redundancy in terms of size and numbers.

5. Conclusion and Future Work

In the multi-site software development, software process like

CSD, DSD, and GSD have begun to introduce.

The paper limits the discussion as a framework that can be

fulfilled later in the specific aspect like values, principles,

practices, and implementation. As a further work, the

framework component should be detailed with the how an

aspect that gives a framework user a detailed action that

needs to be fulfilled. On the other's side, the framework also

needs to be evaluated through several assessments and case

studies implementation.

References

[1] Agarwal, R. and Umphress, D. 2008. Extreme

programming for a single person team. In Proceedings

of the 46th Annual Southeast Regional Conference on

XX (Auburn, Alabama, March 28 - 29, 2008). ACM-SE

46. ACM, New York, NY, 82-87.

[2] Bass, M. 2006. Monitoring GSD projects via shared

mental models: a suggested approach. In Proceedings of

the 2006 international Workshop on Global Software

Development for the Practitioner (Shanghai, China,

May 23 - 23, 2006). GSD '06. ACM, New York, NY,

34-37.

[3] Beck, K. 1999. Extreme Programming Explained.

Addison-Wesley.

[4] Cao, L., Mohan, K., Xu, P., and Ramesh, B. 2004. How

Extreme Does Extreme Programming Have to Be?

Adapting XP Practices to Large-Scale Projects. In

Proceedings of the Proceedings of the 37th Annual

Hawaii international Conference on System Sciences

(Hicss'04) - Track 3 - Volume 3 (January 05 - 08,

2004). HICSS. IEEE Computer Society, Washington,

DC, 30083.3.

[5] Evaristo, J. R. and Scudder, R. 2000. Geographically

Distributed Project Teams: A Dimensional Analysis. In

Proceedings of the 33rd Hawaii international

Conference on System Sciences-Volume 7 - Volume 7

(January 04 - 07, 2000). HICSS. IEEE Computer

Society, Washington, DC, 7052.

[6] Grudin, J. 1994. Computer-Supported Cooperative

Work: History and Focus. Computer 27, 5 (May. 1994),

19-26.

[7] Gumm, D. C. 2006. Distribution Dimensions in

Software Development Projects: A Taxonomy. IEEE

Software. 23, 5 (Sep. 2006), 45-51.

[8] Holmstrom, H., Conchuir, E. O., Agerfalk, P. J., and

Fitzgerald, B. 2006. Global Software Development

Challenges: A Case Study on Temporal, Geographical

and Socio-Cultural Distance. In Proceedings of the

IEEE international Conference on Global Software

Engineering (October 16 - 19, 2006). ICGSE. IEEE

Computer Society, Washington, DC, 3-11.

[9] Lanubile, F., Damian, D., and Oppenheimer, H. L.

2003. Global software development: technical,

organizational, and social challenges. SIGSOFT Softw.

Eng. Notes 28, 6 (Nov. 2003), 2-2.

[10] Mockus, A. and Herbsleb, J. 2001. Challenges of

Global Software Development. In Proceedings of the

7th international Symposium on Software Metrics

(April 04 - 06, 2001). METRICS. IEEE Computer

Society, Washington, DC, 182.

[11] Pilatti, L., Audy, J. L., and Prikladnicki, R. 2006.

Software configuration management over a global

software development environment: lessons learned

from a case study. In Proceedings of the 2006

international Workshop on Global Software

Development For the Practitioner (Shanghai, China,

May 23 - 23, 2006). GSD '06. ACM, New York, NY,

45-50.

[12] Sangwan, R., Bass, M., Mullick, N., Paulish, D. J., and

Kazmeier, J. 2007. Global Software Development

Handbook (Auerbach Series on Applied Software

Engineering Series). Auerbach Publications.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 112
Volume 1, Issue 3, October 2010

[13] Sengupta, B., Chandra, S., and Sinha, V. 2006. A

research agenda for distributed software development.

In Proceedings of the 28th international Conference on

Software Engineering (Shanghai, China, May 20 - 28,

2006). ICSE '06. ACM, New York, NY, 731-740.

Author Biographies

Ridi Ferdiana. Mr. Ridi Ferdiana was born in 1983. He is a doctoral

student at Gadjah Mada University, Yogyakarta since 2008. He earned his

master degree from the same university in 2006. In his professional area, he

holds several professional certifications such as MCP, MCTS, MCPD,

MCITP, MVP and MCT. In his daily research activities he really enjoys to

learn about software engineering, business platform collaboration, and

programming optimization.

Lukito Edi Nugroho. Born in 1966, Dr. Lukito Edi Nugroho is an

Associate Professor in the Department of Electrical Engineering and

Information Technology, Gadjah Mada University. He obtained his M.Sc

and PhD degrees from James Cook University in 1995 and Monash

University in 2002, respectively. His areas of interest include software

engineering, distributed and mobile computing, and application of ICT in

education.

Paulus Insap Santosa. Insap was born in Klaten, 8 January 1961. He

obtained his undergraduate degree from Universitas Gadjah Mada in 1984,

master degree from University of Colorado at Boulder in 1991, and

doctorate degree from National University of Singapore in 2006. His

research interest including Human Computer Interaction and Technology in

Education.

Ahmad Ashari Place and date of birth: Surabaya, May 2nd 1963. Get

Bachelor’s degree 1988 in Electronics and Instrumentation, Physics

department Gadjah Mada University, Yogyakarta. Master degree 1992 in

Computer Science, University of Indonesia, Jakarta Doctor Degrees 2001 in

Informatics, Vienna University of Technology. Major Field of study is

distributed system, Internet, Web Services, and Semantic Web.

